
UCRL-TR-212726

An Integral Method for Determining
Induced Voltage in Time-Varying Wire
Inductors

B. Fasenfest, D. White, J. Rockway

June 6, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 

 
 
 

 

 This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
 



1 

 

 

 

 

 

 

An Integral Method for Determining Induced Voltage in Time-Varying Wire 

Inductors 

 

 

Benjamin Fasenfest 

Dan White 

John Rockway 

 

March 18, 2005 

 



2 

 

 

I.  Introduction 

 
 This report documents the creation of software tools to model time-varying wire 

inductors.  The class of inductors studied consists of arbitrary wire shapes in non-

magnetic material.  When the wire structures are deformed, the inductance changes, and a 

voltage is induced.  This voltage is of interest, for instance when the inductor is used to 

measure or sense a shockwave.  An integral technique, which only requires integrating 

over the wire segments, is used to find the inductance at each time step, with backwards-

difference approximations being used on successive time steps to determine the voltage.  

This method allows for arbitrary time-varying wire structures.  It was tested for several 

canonical problems and used to model a double helix solenoid compressed by a 

shockwave. 

 

II.  Formulation 

 

 One method of calculating inductance is from stored energy.  For a single 

conductor, inductance is related to stored energy by 

2

2 mWL
I

= ,                                                            (1) 

Where L is the inductance, I is the current, and mW  is the stored magnetic energy.  Stored 

energy can be written either as an integral of the magnetic flux density over all space, 
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BW dV
µ

= ∫                                                       (2) 

or as an integral over only the current-carrying regions, 

1
2m

V

W dV= ∫ iA J ,                                                    (3) 

where A is the magnetic vector potential found from the current density J by 

( ) ( )0

4 V

dVµ
π ′

′
′

′∫
J r

A r =
r - r

.                                               (4) 

 To make use of equation (4), the actual wire inductor is represented by many 

connected straight wire segments.  On a short wire segment at DC, the current will be 

evenly distributed throughout the cross section of the wire, and can be assumed to flow 

straight down the wire.  This leads to a current density vector on the nth segment of 

2

ˆ
=

aπ
n

n
lJ                                                           (5) 

where a is the wire radius and n̂l is the unit vector along the wire.  For mutual inductance 

between wire segments, it is assumed that the wire radius is less than the separation 

between wires so that current-carrying filaments can replace both wires.  This 

replacement is common in inductance calculations [1,2], and allows the integral in 

equation (4) to be reduced to 

( ) 0
ˆ

4 l

dlµ
π ′

′
′

′∫
lA r =

r - r
,                                                    (6) 

leading to a mutual inductance of 
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r - r
                                                 (7). 

For the self-induction of a wire segment, the approximate result 

70 2 2ln 0.75 2 10 ln 0.75
2

m m m
mm m

l l lL l
a a

µ
π

−⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞≈ − = × −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
                      (8) 

found in [3] is used.  To find the total inductance of the wire structure, the self-inductance 

for every wire and the mutual inductance for every pair of wires is computed and 

summed. 

 Resistance for a wire segment can be found from the equation 

2
m m

m
lR

a
ρ
π

=                                                             (9) 

where mρ is the electrical resistivity of the wire m.  The total resistance is simply the sum 

of the resistance for each wire segment. 

 The voltage across the inductor terminals will be given by 

( ) ( )dLV t I R t I
dt

= + .                                                  (10) 

If a simple backwards-difference approximation is used for the derivative, equation (10) 

becomes 

( )1( ) n n
n n

L LV t I R t I
t

−−
= +

∆
.                                           (11) 

 With an order ( )2O t∆  accurate backwards-difference approximation, equation 

(10) becomes 

( )1 13 4( )
2

n n n
n n

L L LV t I R t I
t
− −− +

= +
∆

.                                    (12) 

Note that equation (10) assumes a constant current through the inductor. 
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III.  Software Validation 

 
 Two main drivers were created to implement the formulation.  These test drivers 

rely on the BEMSTER boundary-element libraries for integration rules, element 

geometry descriptions, and Green’s functions.  The first driver, ComputeLFromWire, 

reads in a wire mesh in .jfg format (exported from MESHANTS) and computes the total 

inductance.  It is capable of running parametric sweeps on wire radius as well as on the 

number of integration points used.  Since the same quadrature rules are used for the 

source and testing integrations in equation (7) and there are no anisotropic materials, the 

mutual inductance mn nmL L= , and only half of the interactions need to be computed. 

 To test the method, a circular wire loop with a loop radius R 1 m and a wire 

radius r of 1 cm was simulated.  The exact solution for the self-inductance of a circular 

wire loop is given by  

78 74 ln 10 ,
4

RL R H
r

π −⎛ ⎞⎛ ⎞= − ×⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 [4]                                        (13) 

or 6.201e-6 for this particular loop.  The wire loop was meshed with different numbers of 

wire segments using MESHANTS, and the inductance was computed with different 

orders of quadrature rules.  The results, graphed in Figure 1, show that the error in the 

computed solution decrease as the number of segments increases, which is unsurprising.  

However, it also shows that as the number of segments increases, higher orders of 

integration quadrature rules are necessary to realize the full accuracy of the geometry 

discritization.  This is likely because as the number of elements increases, adjacent wire 

segments are getting closer together relative to their length.  This ratio of wire segment 
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length to separation requires higher order quadratures to correctly compute the integrals.  

Although only the “near” segment interactions require this increased quadrature 

accuracy, for simplicity, all interactions use the same quadrature rule.   
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Figure 1.  Error in the computed inductance for a wire loop. 

 

Based on the results from Figure 1, 19th order quadrature rules seem an adequate 

choice for 1 % error in inductance; for every mesh density that could result in less than 1 

% error, the error was below that point by 19th order quadrature.  However, this increase 

in quadrature order does increase run time significantly.  The cost of evaluating the 

inductance scales at approximately the square of the number of integration quadrature 

points times the square of the number of wire segments.  This relation can be seen from 

the run times for the loop, shown in Figure 2.  Because of accuracy issues with the timing 

routine used, the time reported for simulations taking of less than a hundredth of a second 

are not very accurate.  However, the scaling of run time with the number of segments and 

the quadrature order can still be seen. 
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Figure 2.  CPU time required to calculate the inductance of a circular wire loop. 

 

 The second driver, LfromChangingWire, removes the need for an 

externally generated mesh.  Instead, the user enters in the start and stop coordinates of the 

inductor in cylindrical coordinates and a description of how the inductor varies with time.  

From this information, the program automatically generates a mesh of the inductor for 

every time step and computes the induced voltage as a function of time.  Equation (11) is 

used to find the voltage for the first time step, and equation (12) is used for all following 

time steps.  

The test loop used had a starting radius R of 1 m, an ending radius of 0.1 m, a 

constant wire radius of 1 cm.  The loop was assumed to take 50 seconds to transition 

from the larger to smaller radius.  The derivative of inductance with respect to time for a 

wire loop can be found from (13) as 

78 34 ln 10 .
4

dL dL dR R dR
dt dR dt r dt

π −⎛ ⎞⎛ ⎞= = − ×⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
                                    (14) 
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For the loop tested, 0.018dR
dt

= .  The loop was simulated using 80 wire segments 

and 19th order integration rules.  Figure 3 compares the analytic and simulated results for 

induced voltage when a time step of 0.5 seconds is chosen.  Figure 4 shows the 

simulation re-run with a time step of 0.125 seconds.  It can be seen that the results are 

very good when the time step is chosen small enough.  The relationship between error 

and time step is plotted in Figure 5.  It can be seen from the plot that time step choice is 

an important factor in determining accuracy.  
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Figure 3.  Analytic and simulated results for the induced voltage on a changing 

wire loop with time step 0.5 seconds. 
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Figure 4.  Analytic and simulated results for the induced voltage on a changing 

wire loop with time step 0.125 seconds. 
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Figure 5.  Error in the induced voltage as a function of time step. 
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IV.  Double Helix Results   

 
A modified version of LfromChangingWire was created to model the problem of 

a double helix inductor compressed by a shockwave.  The double helix cross section is 

shown below in Figure 6.  Several parameters are necessary to specify the exact shape of 

the helix:  R1 and R2, the inner and outer radii,  N1 and N2, the number of turns in the 

inner and outer windings, H, the height of the inner winding, S, the offset between the 

tops of the inner and outer windings, and F, the fraction of a turn used to connect the 

inner and outer windings.  Since S is the offset from the top of the inner winding to the 

top of the outer winding, it will be negative when the outer winding is closer to the 

terminals than the inner winding, as shown in Figure 6.  F, the fraction of a turn used to 

connect the inner and outer windings, can be chosen as 0.5 to take a half-turn to go from 

the inner to outer winding. 

 

Figure 6.  The rotational cross-section of the double helix inductor. 
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 In addition to the initial dimensions of the inductor, several more parameters are 

needed to describe what happens after the shockwave wavefront has encountered the 

inductor.  The compression ratio, C, describes how much the parts of the inductor that are 

inside the shockwave have compressed along the length of the helix.  The compression 

algorithm assumes that all of the wire segments behind the wavefront are compressed by 

the factor C.  However, this is not quite a complete description of what would really 

happen.  As the shockwave compressed the helix in Z, it would also slightly expand its 

radius.  However, this expansion is not currently modeled, although it could be added 

later.  The shockwave velocity and the resistance of the wire before and after being 

heated by the shockwave also need to be specified.  Currently, all these parameters are 

read in from a simple user-generated text file.   

 At the simulation’s completion, two output files are created.  One contains a table 

with the inductance, voltage, and wavefront position for every time step, as well as the 

CPU time taken to complete the simulation.  The second contains the nodes of the wire 

segments at every time step, which can be used to examine how the shockwave 

compresses the helix.  A simple Matlab script was created to read this file and produce 

movies or still images of the helix. 

A double helix using the parameters in Table 1 was simulated with different 

numbers of segments.  Figures 7 and 8 show the helix in various stages of compression, 

with the shockwave wavefront shown in red.   
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Table 1:  Parameters for the test helix 

R1 1 cm 
R2 1.2 cm 
N1 5 Turns 
N2 5 Turns 
H 1 cm 
F 0.5 Turns 
S 0 cm 
C 0.333 
Shock Velocity 2000 m/s 
Delta T 5.00E-08 
Wire Radius 0.1 mm 
Resistivity 0 

 

 

 

Figure 7.  The double helix inductor before the shockwave hits it.  
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Figure 8.  The double helix when the shockwave wavefront (shown in red) has 

progressed halfway down the original height of the inductor.  Note that the portion of the 

helix that has been hit by the shockwave is compressed to 0.333 times the spacing 

between turns. 

 

The results for inductance as a function of time and number of wire segments 

used are shown in Figure 9.  The voltage is shown in Figure 10.  From these figures, it 

can be seen that 250 segments adequately resolves the helix.  For 250 segments, the 

entire simulation takes only 17 seconds to complete.  With a finer mesh of 1000 

segments, the simulation takes 260 seconds.  The expectation for this simulation was that 

if a current of 5-10 A were used, the result would be a few volts.  The maximum induced 

voltage in Figure 8 multiplied by 10 A gives 2.7 V, around what was expected. 
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Figure 9.  Inductance of a double helix as a function of time and number of wire 

segments used. 
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Figure 10. Voltage induced by a double helix as a function of time and number of wire 

segments used. 
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V.  Future Work 

 

 There are still several areas for improvement on the current code.  Because the 

time needed for the inductance calculation at each time step is proportional to the number 

of elements squared, simulating very large meshes would be very time consuming.  These 

large meshes would be necessary if the number of turns in the helix increased.  To 

combat this increased computational cost, a fast QR decomposition method could be used 

to accelerate the computation of L at each time step.  This method has been used on 

electrostatic problems and should apply easily to magnetostatics.  It has the potential to 

reduce the cost from ( )2O N  to ( )logO N N .  The BEMSTER libraries already contain 

some basic QR algorithms, which could be extended and further developed for this 

problem. 

 A more accurate model of the behavior of the double helix in a shockwave might 

be necessary for increased accuracy.  For instance, the expansion in radius of the inductor 

after it has been hit by the shockwave could be incorporated into the model.  Using the 

BEMSTER libraries, the magnetic field could be computed at any points in space, such as 

those needed for plots of the H field.  These plots could show how the magnetic field 

changed as the inductor compressed, and could lead to a greater understanding of the 

problem.  In addition, the magnetic fields could be integrated over all space using 

equation (2) as an alternate method of computing the inductance of the helix. 
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VI.  Conclusion 

 

 A method for calculating the voltage induced by a time-varying inductor was 

derived based on the integration of the magnetic vector potential.  The method was tested 

against analytic results and shown to be accurate if the time step, number of wire 

segments, and order of the integration rules was chosen appropriately.  The code was then 

applied to a double helix inductor compressed by a shockwave. 
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